PART-II: CHEMISTRY #### **SECTION 1 (Maximum Marks: 32)** - This section contains EIGHT questions - The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9, both inclusive - For each question, darken the bubble corresponding to the correct integer in the ORS - Marking scheme: - +4 If the bubble corresponding to the answer is darkened - 0 In all other cases - *21. In dilute aqueous H₂SO₄, the complex diaquodioxalatoferrate(II) is oxidized by MnO₄. For this reaction, the ratio of the rate of change of [H⁺] to the rate of change of [MnO₄] is - *22. The number of hydroxyl group(s) in Q is $$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ &$$ 23. Among the following, the number of reaction(s) that produce(s) benzaldehyde is II CO, HCF Anhydrous AlCl₃/CuCl CHCl₂ $$H_2O$$ $100^{\circ}C$ COCl H_2 $Pd-BaSO_4$ CO₂Me IV DIBAL-H Toluene, -78°C H_2O - 24. In the complex acetylbromidodicarbonylbis(triethylphosphine)iron(II), the number of Fe-C bond(s) is - 25. Among the complex ions, $[Co(NH_2-CH_2-CH_2-NH_2)_2Cl_2]^+$, $[CrCl_2(C_2O_4)_2]^{3-}$, $[Fe(H_2O)_4(OH)_2]^+$, $[Fe(NH_3)_2(CN)_4]^-$, $[Co(NH_2-CH_2-CH_2-NH_2)_2(NH_3)Cl]^{2+}$ and $[Co(NH_3)_4(H_2O)Cl]^{2+}$, the number of complex ion(s) that show(s) cis-trans isomerism is - *26. Three moles of B₂H₆ are completely reacted with methanol. The number of moles of boron containing product formed is - 27. The molar conductivity of a solution of a weak acid HX (0.01 M) is 10 times smaller than the molar conductivity of a solution of a weak acid HY (0.10 M). If $\lambda_{X^-}^0 \approx \lambda_{Y^-}^0$, the difference in their pK_a values, pK_a(HX)-pK_a(HY), is (consider degree of ionization of both acids to be << 1) 28. A closed vessel with rigid walls contains 1 mol of $^{238}_{92}$ U and 1 mol of air at 298 K. Considering complete decay of $^{238}_{92}$ U to $^{206}_{82}$ Pb, the ratio of the final pressure to the initial pressure of the system at 298 K is ### SECTION 2 (Maximum Marks: 32) - This section contains EIGHT questions - Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct - For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS - Marking scheme: - +4 If only the bubble(s) corresponding to all the correct option(s) is(are) darkened - 0 If none of the bubbles is darkened - -2 In all other cases - *29. One mole of a monoatomic real gas satisfies the equation p(V b) = RT where b is a constant. The relationship of interatomic potential V(r) and interatomic distance r for the gas is given by 30. In the following reactions, the product S is $$H_3C$$ $$\xrightarrow{i.O_3} \mathbf{R} \xrightarrow{NH_3} \mathbf{S}$$ ## JEE(ADVANCED)-2015-Paper-2-PCM-10 ### 31. The major product **U** in the following reactions is $$\begin{array}{c} CH_2=CH-CH_3, H^+\\ \text{high pressure, heat} \end{array} \longrightarrow \mathbf{T} \qquad \begin{array}{c} \text{radical initiator, O}_2\\ \end{array} \longrightarrow \mathbf{U} \\ (A) \qquad \qquad \begin{array}{c} H\\ \\ O \end{array} \longrightarrow \begin{array}{c} CH_3\\ \\ O \end{array} \longrightarrow \begin{array}{c} CH_3\\ \\ O \end{array} \longrightarrow \begin{array}{c} CH_3\\ \\ O \end{array} \longrightarrow \begin{array}{c} CH_2\\ \longrightarrow$$ 32. In the following reactions, the major product W is $$NH_2$$ $NaNO_2, HCI$ O^*C $N=N$ $N=N$ OH $N=N$ - *33. The correct statement(s) regarding, (i) HClO, (ii) HClO₂, (iii) HClO₃ and (iv) HClO₄, is (are) - (A) The number of Cl = O bonds in (ii) and (iii) together is two - (B) The number of lone pairs of electrons on Cl in (ii) and (iii) together is three - (C) The hybridization of Cl in (iv) is sp³ - (D) Amongst (i) to (iv), the strongest acid is (i) - 34. The pair(s) of ions where BOTH the ions are precipitated upon passing H₂S gas in presence of dilute HCl, is(are) - (A) Ba²⁺, Zn²⁺ (C) Cu²⁺, Pb²⁺ (B) Bi³⁺, Fe³⁺ (D) Hg²⁺, Bi³⁺ - *35. Under hydrolytic conditions, the compounds used for preparation of linear polymer and for chain termination, respectively, are - (A) CH₃SiCl₃ and Si(CH₃)₄ (B) (CH₃)₂SiCl₂ and (CH₃)₃SiCl (C) (CH₃)₂SiCl₂ and CH₃SiCl₃ - (D) SiCl₄ and (CH₃)₃SiCl - When O2 is adsorbed on a metallic surface, electron transfer occurs from the metal to O2. The TRUE 36. statement(s) regarding this adsorption is(are) - (A) O2 is physisorbed - (B) heat is released - (C) occupancy of π_{2p} of O₂ is increased - (D) bond length of O2 is increased #### SECTION 3 (Maximum Marks: 16) - This section contains TWO paragraphs - Based on each paragraph, there will be TWO questions - Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct - For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS - Marking scheme: - +4 If only the bubble(s) corresponding to all the correct option(s) is(are) darkened - 0 In none of the bubbles is darkened - 2 In all other cases #### PARAGRAPH 1 When 100 mL of 1.0 M HCl was mixed with 100 mL of 1.0 M NaOH in an insulated beaker at constant pressure, a temperature increase of 5.7°C was measured for the beaker and its contents (Expt. 1). Because the enthalpy of neutralization of a strong acid with a strong base is a constant (-57.0 kJ mol-1), this experiment could be used to measure the calorimeter constant. In a second experiment (Expt. 2), 100 mL of 2.0 M acetic acid ($K_a = 2.0 \times 10^{-5}$) was mixed with 100 mL of 1.0 M NaOH (under identical conditions to Expt. 1) where a temperature rise of 5.6°C was measured. (Consider heat capacity of all solutions as 4.2 J g⁻¹ K⁻¹ and density of all solutions as 1.0 g mL⁻¹) - Enthalpy of dissociation (in kJ mol⁻¹) of acetic acid obtained from the Expt. 2 is *37. - (A) 1.0 (B) 10.0 (C) 24.5 (D) 51.4 *38. The pH of the solution after Expt. 2 is (A) 2.8 (B) 4.7 (C) 5.0 (D) 7.0 #### PARAGRAPH 2 In the following reactions $$C_8H_6 \xrightarrow{Pd-BaSO_4} C_8H_8 \xrightarrow{i. B_2H_6} X$$ $$\downarrow H_2O \\ HgSO_4, H_2SO_4$$ $$C_8H_8O \xrightarrow{i. EtMgBr, H_2O} Y$$ ## JEE(ADVANCED)-2015-Paper-2-PCM-12 #### 39. Compound X is ## 40.